Renovopedia

    Subscribe to Updates

    Get the latest creative articles and news from Renovopedia about Home Improvments.

    What's Hot

    Current Obsessions: Spring Incoming

    March 25, 2023

    The Tiny Lot Was So Steep It Was Almost Vertical. But That View …

    March 24, 2023

    A Dreamy Holiday Rental Cottage in Wales

    March 24, 2023
    Facebook Twitter Instagram
    • About
    • Privacy Policy
    • Terms
    • Contact
    Facebook Twitter Instagram YouTube LinkedIn
    RenovopediaRenovopedia
    Demo
    • Home
    • News
    • Trending
    • Ideas

      7 Master Bedroom Designs With Stylish Style And Functional Features

      January 27, 2023

      Why is Garage Door maintenance essential?

      January 17, 2023

      5 Ways To Improve Your Flooring

      December 22, 2022

      Ideas to revamp and reorganise your garage

      December 22, 2022

      The Benefits Of Cleaning Your Windows Regularly

      November 30, 2022
    • Videos

      Water In Electrical Panel! Easy Fix? #Short

      March 30, 2022

      Working on My House LIVE! | Framing Door Openings

      March 23, 2022

      Framing a Wall With Angles Over Stair Bulkhead

      March 22, 2022

      Framing Bedroom/Hall Closet | Adding Basement Stair Headroom

      March 17, 2022

      Fixing Hacked Floor Framing | Straightening Kitchen Floor… Kinda

      March 8, 2022
    • Interior Remodel
    • Painting
    • Kitchen
    • More
      • Skills & Specialties
      • Exterior Remodel
      • Bathroom
      • Outdoor Building
      • Green Improvements
      • Home Services
    Renovopedia
    Home » Learn How to Calculate Safe Electrical Load Capacities

    Learn How to Calculate Safe Electrical Load Capacities

    November 27, 2021No Comments Skills & Specialties
    Facebook Twitter Pinterest LinkedIn WhatsApp Telegram Tumblr Reddit Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    We all have a mountain of electrical appliances around the house and many, if not all, of them, have some sort of motor running them. These may include furnaces, dishwashers, air conditioners, sump pumps, garbage disposals, and microwaves.

    According to the electrical code, each of these motorized gadgets needs a dedicated circuit just for their own use. Permanent heating appliances also have a fairly heavy electrical load, and most require their own dedicated circuits. Allowing these appliances to share a circuit with other devices can easily overload the circuit, since by nature they have a fairly heavy power draw, especially when they first startup.

    Demo

    Older homes that have not had their wiring updated often have such appliances installed on circuits shared with other devices, and in these situations, it is quite common for circuit breakers to trip or fuses to blow.

    Here are some of the appliances that may require dedicated electrical circuits (check with local building codes for exact requirements):

    • Microwave
    • Electric oven
    • Garbage disposal
    • Dishwasher
    • Washing machine
    • Trash compactor
    • Refrigerator
    • Room air conditioner
    • Furnace
    • Electric water heaters
    • Electric ranges
    • Electric clothes dryer
    • Central air conditioner

    So how is one to know what circuit size is required by each appliance? If you undersize a circuit feeding large central air conditioner, for example, you may find yourself with a situation in which your air conditioner circuit breaker trips whenever it is running at maximum power. Calculating the correct size for a dedicated appliance circuit involves calculating the maximum power demand that will be placed on a circuit, then choosing a circuit size that accommodates that demand, plus a margin for safety.

    Circuit Capacity

    Figuring the electrical requirements or demand of an appliance begins with an understanding of a simple relationship between amps, watts, and volts—the three key means of measuring electricity. A relationship principle known as Ohm’s Law states that amperage (A) x volts (V) = watts (W). Using this simple relationship principle, you can calculate the available wattage of any given circuit size:

    • 15-amp 120-volt circuit: 15 amps x 120 volts = 1,800 watts
    • 20-amp 120-volt circuit: 20 amps x 120-volts = 2,400 watts
    • 25-amp 120-volt circuit: 25 amps x 120 volts = 3,000 watts
    • 20-amp 240-volt circuit: 20 amps x 240 volts = 4,800 watts
    • 25-amp 240-volt circuit: 25 amps x 240 volts = 6,000 watts
    • 30-amp 240-volt circuit: 30 amps x 240 volts = 7,200 watts
    • 40-amp 240-volt circuit: 40 amps x 240 volts = 9,600 watts
    • 50-amp 240-volt circuit: 50 amps x 240 volts = 12,000 watts
    • 60-amp 240-volt circuit: 60 amps x 240 volts = 14,400 watts

    The simple A x V = W formula can be restated in a number of ways, such as W ÷ V = A, or W ÷ A = V.


    The Spruce / Michela Buttignol

    How to Calculate Circuit Load Demand

    Choosing the correct size for a dedicated appliance circuit involves fairly simple arithmetic to make sure that the appliance’s electrical demand is well within the capacity of the circuit. The load can be measured in either amp or watts, and it is fairly easy to calculate based on the information printed on the appliance motor specification label.

    Motors have a nameplate rating that is listed on the side of the motor. It lists the type, serial number, voltage, whether it is AC or DC, the RPM’s, and, most importantly, the amperage rating. If you know the voltage and amperage rating, you can determine the wattage or total capacity needed for the safe operation of that motor. Heating appliances generally have their wattage ratings printed on the faceplate.

    A Sample Circuit Calculation

    For example, think of a simple hairdryer rated at 1,500 watts running on a 120-volt bathroom branch circuit. Using the W ÷ V = A variation of Ohm’s law, you can calculate that 1,500 watts ÷ 120 volts = 12.5 amps. Your hair dryer running a maximum heat can draw 12.5 amps of power. But if you consider that a vent fan and bathroom light fixture might also be operating at the same time, you can see that a 15-amp bathroom circuit with a total capacity of 1,800 watts might be hard-pressed to handle such a load.

    Let’s imagine that our sample bathroom has a vent fan that draws 120 watts of power, a light fixture that has three 60-watt bulbs (180 watts total), and an electrical outlet where that 1,500-watt hairdryer might be plugged in. All of these could easily be drawing power at the same time. The likely maximum load on that circuit could reach 1,800 watts, putting it right at the maximum that a 15-amp circuit (providing 1,800 watts) could handle. But if you put a single 100-watt lightbulb in the bathroom light fixture, you create a situation where a tripped circuit breaker is likely.

    Electricians usually calculate circuit load with a 20 percent safety margin, making sure that the maximum appliance and fixture load on the circuit is no more than 80 percent of the available amperage and wattage provided by the circuit. In our sample bathroom, a 20-amp circuit providing 2,400 watts of power can quite easily handle 1,800 watts of demand, with 25 percent safety margin. This is the reason why most electrical codes call for a 20-amp branch circuit to serve a bathroom. Kitchens are another location where 120-volt branch circuits serving outlets are virtually always 20-amp circuits. In modern homes, it is normally only general lighting circuits that are still wired as 15-amp circuits.

    Dedicated Appliance Circuits

    Exactly the same principle is used to calculate the demand on a circuit serving a single appliance, such as a microwave oven, garbage disposal, or air conditioner. A large microwave oven with a built-in vent fan and light fixture can easily demand 1,200 to 1,500 watts of power, and an electrician wiring a dedicated circuit for this appliance would likely install a 20-amp circuit that provides 2,400 watts of available power. On the other hand, a large 1 hp garbage disposer drawing 7 amps (840 watts), can easily be served by a dedicated 15-amp circuit with 1,800 watts of available power.

    The same method of calculation can be used for any dedicated appliance circuit serving a single appliance. For example, a 240-volt electric water heater rated for 5,500 watts can be calculated in this way: A = 5,500 ÷ 240, or A = 22.9. But because the circuit requires a 20 percent safety margin, the circuit needs to provide at least 27.48 amps (120 percent of 22.9 = 27.48 amps). An electrician would install a 30-amp 240-volt circuit to serve such a water heater.

    Most electricians will slightly oversize the dedicated circuit size to allow for future changes. For example, if you have a fairly small 800-watt microwave oven, the electrician will normally install a 20-amp circuit even though a 15-amp circuit can easily handle this appliance. This is done so that the circuit will be able to handle future appliances that may be larger than the ones you have now.

    Source: The Spruce

    Demo
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Reddit VKontakte Telegram WhatsApp

    Related Posts

    Reducing the Size of a Light Fixture Ceiling Hole

    December 7, 2022 Skills & Specialties

    17 Basic Tools for Electrical Projects

    December 7, 2022 Skills & Specialties

    10 Tool Hacks Every Homeowner Should Know

    December 7, 2022 Skills & Specialties

    How to Fix a Wobbly Ceiling Fan

    November 17, 2022 Skills & Specialties

    7 Essential DIYs Every Homeowner Should Know

    September 14, 2022 Skills & Specialties

    What Is Low-Voltage Wire?

    June 27, 2022 Skills & Specialties
    Add A Comment

    Leave A Reply Cancel Reply

    Demo
    Don't Miss

    Instructions for Installing a Vacuum Breaker on an Irrigation System

    Outdoor Building December 7, 2022

    A pressure-vacuum breaker is an important part of any irrigation system. It’s required by most…

    Tips for Buying the Best Office Chair Pad

    January 20, 2022

    The Best Septic Tank Cleaning Services of 2021

    November 28, 2021

    5 Things You Need For Throwing A Graduation Party At Your New Home

    June 3, 2022
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo
    Latest Articles

    Current Obsessions: Spring Incoming

    March 25, 2023

    The Tiny Lot Was So Steep It Was Almost Vertical. But That View …

    March 24, 2023

    A Dreamy Holiday Rental Cottage in Wales

    March 24, 2023

    A Considered Renovation in Old Versailles by Architect Saba Ghorbanalinejad

    March 24, 2023

    Subscribe to Updates

    Get the latest creative articles and news from Renovopedia about Home Improvements.

    Demo
    Our Picks

    Current Obsessions: Spring Incoming

    March 25, 2023

    The Tiny Lot Was So Steep It Was Almost Vertical. But That View …

    March 24, 2023

    A Dreamy Holiday Rental Cottage in Wales

    March 24, 2023
    About Us
    About Us

    Renovopedia is the premier source for home improvement news and articles. We provide the latest news and articles for homeowners looking to find inspiration, solutions, tips, and ideas to prepare your home for sale or turn it into your dream home.

    We're accepting new partnerships right now.

    Email Us: hello@renovopedia.com
    Contact: +1-320-0123-451

    Facebook Twitter Pinterest YouTube LinkedIn
    Popular

    How to Remove and Reinstall a Door

    June 23, 2021

    5 Steps to Avoid Wall Cracks from Shifting Soil

    February 1, 2022

    Editors’ Picks: 11 Gifts for Valentine’s Day 2022

    February 10, 2022
    © 2023 Renovopedia. All Rights Reserved.
    • Home
    • News
    • Trending
    • Videos
    • About
    • Privacy Policy
    • Terms & Conditions
    • Contact

    Type above and press Enter to search. Press Esc to cancel.